

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF MECHANICAL ENGINEERING

IV Year - I Semester		L	T	P	C
		3	0	0	3
FINITE ELEMENT METHODS					

Course Objectives:

- 1. To learn basic principles of finite element analysis procedure
- 2. To learn the theory and characteristics of finite elements that represent engineering structures
- 3. To learn and apply finite element solutions to structural, thermal and dynamic problems.
- 4. Learn to model complex geometry problems and solution techniques.

UNIT-I

Introduction to finite element method, stress and equilibrium, strain – displacement relations, stress – strain relations, plane stress and plane strain conditions, variational and weighted residual methods, concept of potential energy, one dimensional problems.

Discretization of domain, element shapes, discretization procedures, assembly of stiffness matrix, band width, node numbering, mesh generation, interpolation functions, local and global coordinates, convergence requirements, treatment of boundary conditions.

UNIT – II

Analysis of Trusses: Finite element modeling, coordinates and shape functions, assembly of global stiffness matrix and load vector, finite element equations, treatment of boundary conditions, stress, strain and support reaction calculations.

Analysis of Beams: Element stiffness matrix for Hermite beam element, derivation of load vector for concentrated and UDL, simple problems on beams.

UNIT – III

Finite element modeling of two dimensional stress analysis with constant strain triangles and treatment of boundary conditions, formulation of axisymmetric problems.

UNIT-IV

Higher order and isoparametric elements: One dimensional quadratic and cubic elements in natural coordinates, two dimensional four noded isoparametric elements and numerical integration.

UNIT – V

Steady state heat transfer analysis: one dimensional analysis of a fin and two dimensional analysis of thin plate, analysis of a uniform shaft subjected to torsion. Dynamic Analysis: Formulation of finite element model, element consistent and lumped mass matrices, evaluation of eigen values and eigen vectors, free vibration analysis.

Text Books:

- 1. The Finite Element Methods in Engineering / SS Rao / Pergamon.
- 2. Introduction to Finite Elements in Engineering/ Tirupathi R. Chandrupatla, Ashok D. Belegundu, Pearson Publishers.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF MECHANICAL ENGINEERING

References:

- 1.Finite Element Method with applications in Engineering / YM Desai, Eldho & Shah /Pearson publishers
- 2.An introduction to Finite Element Method / JN Reddy / McGraw Hill
- 3. The Finite Element Method for Engineers Kenneth H. Huebner, Donald L. Dewhirst, Douglas E. Smith and Ted G. Byrom / John Wiley & sons (ASIA) Pte Ltd.

Course outcomes:

Upon successful completion of this course you should be able to:

- 1. Understand the concepts behind variational methods and weighted residual methods in FEM
- 2. Identify the application and characteristics of FEA elements such as bars, beams, plane and isoparametric elements, and 3-D element .
- 3. Develop element characteristic equation procedure and generate global equations.
- 4. Able to apply Suitable boundary conditions to global equations, and reduce it to a solvable form.
- 5. Able to apply the FE procedure to field problems like heat transfer.